First coupled Sr and Pb isotopic measurements in volcanic gas condensates and groundwaters of Vulcano Island (Italy)

Anthony Nonell
Observatoire Midi-Pyrénées, Laboratoire des Mécanismes et Transferts en Géologie, UMR 5563, 16 Avenue Edouard Belin, F-31400 Toulouse, France (anthony.nonell@lmtg.obs-mip.fr)

Jean-Paul Toutain
Observatoire Midi-Pyrénées, Laboratoire des Mécanismes et Transferts en Géologie, UMR 5563, 16 Avenue Edouard Belin, F-31400 Toulouse, France
Coordination de la Recherche Volcanologique, Observatoire de Physique du Globe de Clermont-Ferrand, Université Blaise Pascal CNRS Campus des Cézeaux, 24, Avenue des Landais, F-63177 Aubière, France

Mireille Polvé, Marguerite Munoz, and Gilles Berger
Observatoire Midi-Pyrénées, Laboratoire des Mécanismes et Transferts en Géologie, UMR 5563, 16 Avenue Edouard Belin, F-31400 Toulouse, France

For the first time, coupled Sr-Pb concentrations and isotopic compositions have been measured on four crater fumaroles and six groundwaters sampled between 1999 and 2001 at Vulcano Island, southern Italy. Sr concentrations and isotopic compositions of groundwaters show that the Sr budget results mainly from the leaching of volcanic rock by groundwaters. Leaching intensity is controlled by the variable dissolution of volcanic gases into shallow aquifers. The data do not reveal any influence of seawater except at one coastal site. Low Pb concentrations together with calculated saturation indexes with respect to mineral phases indicate that Pb content in groundwaters is strongly influenced by adsorption and/or precipitation processes. Pb isotopic ratios of two steam-heated waters display a clear anthropized meteoric water signature, suggesting gas dissolution or wall rock alteration to be a negligible process for this element in this particular context. Low (≈0.5) and high (10²–10³) enrichment factors were calculated for Sr and Pb, respectively, indicating their refractory and volatile behavior in volcanic gases. Most of the gas samples display Sr and Pb isotopic ratios similar to parent rocks. These data suggest that Sr is mainly derived from wall rock or particle contamination during gas ascent, whereas Pb results mainly from magma degassing. However, two gas condensates collected from two different fumarolic vents and at different periods show a dramatic Pb and Sr isotopic shift with a clear atmospheric/anthropogenic signature. Episodic permeability variations of the volcanic structure, probably arising from microseismicity swarms, changes of local stress field, and migration of self-sealing processes lead to changing interactions between freshly infiltrated meteoric water and volcanic gases that temporarily modify the trace metal signature of the fumarolic gas.

Components: 7671 words, 4 figures, 4 tables.
Keywords: strontium isotopes; lead isotopes; fumaroles; groundwaters; metallic trace elements.
Index Terms: 0450 Biogeosciences: Hydrothermal systems (1034, 3017, 3616, 4832, 8135, 8424); 1040 Geochemistry: Radiogenic isotope geochemistry; 8430 Volcanology: Volcanic gases.
Received 25 March 2005; Revised 2 September 2005; Accepted 30 September 2005; Published 29 November 2005.

1. Introduction

[2] Active hydro-volcanic systems are sites of complex interactions between magmatic gases, wall rock and aquifers fed by meteoric water and/or seawater. These interactions are usually investigated by using classical parameters such as temperature, major and trace compounds chemistry, oxygen fugacity, and δD, δ3He/4He, δ13C or δ18O isotopic compositions applied to fumarolic gases and shallow groundwaters [Aiuppa et al., 2000; Bolognesi and D’Amore, 1993; Capasso et al., 1999; Chiodini et al., 1993; Harris and Maciejewski, 2000; Quiseffit et al., 1989; Symonds et al., 1987, 1996; Taran et al., 1995; Tedesco, 1997; Tedesco et al., 1995]. More recently, boron and sulfur isotope compositions were also used to constrain these interactions [Cortecchi et al., 2001; Leeman et al., 2005; Pennisi et al., 2000]. Using these parameters provide insights on source effects, mixing and alteration processes, possibly interpreted in terms of volcanic/magmatic processes.

[3] Volcanic exhalations are also a source of heavy metals to the atmosphere [Dongarra and Varrica, 1998; Ferrara et al., 1995; Piccardi et al., 1979; Quiseffit et al., 1989; Symonds et al., 1987; Taran et al., 1995; Toutain et al., 2003; Valdeolmogna and Mather, 2003]. Gases emitted through occasional eruptions or quiescent degassing are mainly composed of H2O and CO2 steam with minor amounts of H2S, SO2, HCl, HF and trace gases. Gases contain also metallic trace elements (MTE), that are more or less enriched with respect to the magma [Symonds et al., 1987; Taran et al., 1995; Toutain et al., 2003; Valdeolmogna and Mather, 2003]. Gases emitted through occasional eruptions or quiescent degassing are mainly composed of H2O and CO2 steam with minor amounts of H2S, SO2, HCl, HF and trace gases. Gases contain also metallic trace elements (MTE), that are more or less enriched with respect to the magma [Symonds et al., 1987; Taran et al., 1995; Toutain et al., 2003] as evidenced by highly contrasted Enrichment Factors (EF) defined as follows:

\[
EF_x = \frac{\left(X/R \right)_{y} - \left(X/R \right)_{y}}{\left(X/R \right)_{y} - \left(X/R \right)_{y}}
\]

for an element X, g and r being the gas condensate sample and the rock, respectively, XR corresponding to an element displaying a refractory behavior with respect to volcanic fluids. [Quiseffit et al., 1989]. High EF elements (Sc, Re, Bi, Te, As, Cd, Pb, Tl, among others) are volatile elements mainly produced by selective distillation at the magma chamber level. Low EF elements (Sr, Al, Fe, Mg, Mn among others) are refractory elements mainly present in the gas phase through wall rock and or ash alteration processes in highly acidic context. By coupling the study of both a refractory and a volatile element, one should make available a powerful tool to discriminate processes that contribute to MTE transport in the volcanic pile. [4] As Sr and Pb isotopes do not fractionate measurably in nature [Barbieri and Morotti, 2003; Bollhöfer and Rosman, 2001], their variations are controlled by radioactive processes only and Sr and Pb isotopic compositions are powerful geochemical tracers to identify natural, anthropogenic or atmospheric sources [Bollhöfer and Rosman, 2001; Freydiere and Viers, 2003; Monna et al., 1997, 1999], to study water rock interactions [Barbieri and Morotti, 2003; Goff et al., 1991; Möller et al., 2004; Pennisi et al., 2000] or to describe magmatic evolution [Clocchiatti et al., 1994; De Asis et al., 1997, 2000; Del Moro et al., 1998; Ellam et al., 1989; Esperança et al., 1992; Gioncada et al., 2003]. However, probably as the result of sampling or analytical difficulties, and because most of the metals (including Pb) are strongly partitioned in the particulate phase of volcanic plumes [Hinkley, 1991], Sr and Pb isotopic data on volcanic gases totally lack. Only few Pb isotopic data have been recently published on volcanic aerosols [Monna et al., 1999; Valdeolmogna and Mather, 2003] and secondary solid phases [Ferrara et al., 1995]. On the contrary, in thermal waters, Sr and Pb isotopes are common tools for sources identifications and characterization of water-rock interactions [Barbieri and Morotti, 2003; Goff et al., 1991; Möller et al., 2004; Pennisi et al., 2000].

[5] In this work, we propose the first coupled isotopic study of Sr and Pb in fumarolic gases and thermal waters from Vulcano Island. Data are processed together with rock data [Clocchiatti et al., 1994; De Asis et al., 1997, 2000; Del Moro et al., 1998; Ellam et al., 1989; Esperança et al., 1992; Gioncada et al., 2003] and local anthropogenic/atmospheric signatures [Monna et al., 1999]. The aim of this work is to document the isotopic variability in the hydro-volcanic environment, to identify sources of elements and to constrain processes that control Sr and Pb transfers.

2. Geological Setting and Hydrovolcanic Context

[6] Vulcano is the southernmost island of the Aeolian volcanic Archipelago, southern Tyrrhenian Sea (Figure 1). Its magmatic activity began in the upper Pleistocene with leucitic tephrites to highly potassic trachytes, followed in historic time by alkali-rhyolitic obsidian [Keller, 1980]. Since the last eruption in 1888–1890, the volcanic activity is restricted to (1) a wide fumarolic field located on
Previous studies display chemical and light stable isotope evidences that shallow waters and fumarolic gases compositions result from multiple interactions between magmatic, hydrothermal, meteoric and seawater components [Aiuppa et al., 2000; Bolognesi and D’Amore, 1993; Capasso et al., 1991, 1992, 1999, 2001; Cortecchi et al., 2001; Dongarra et al., 1988; Leeman et al., 2005; Martini, 1980; Panichi and Noto, 1992]. Seismic events, leading to variable fracture permeability, are supposed to modulate mixing processes between geothermal waters, shallow thermal waters and ascending magmatic vapor [Bolognesi and D’Amore, 1993]. The involvement of seawater in the hydrothermal system of Vulcano Island remains a controversial question [Bolognesi, 1996; Chiodini et al., 1995; Cortecchi et al., 2001; Leeman et al., 2005]. Seawater signature modified by wall rock interactions seems obvious in crater-rim fumaroles [Leeman et al., 2005; Panichi and Noto, 1992] whereas the contribution of seawater to the shallow aquifers appears unlikely except for selected samples close to sea-side [Aiuppa et al., 2000; Bolognesi and D’Amore, 1993; Cortecchi et al., 2001].

3. Sampling Techniques

Four crater fumaroles and waters from six wells were sampled between 1999 and 2001 (Figure 1). Fumarolic gases were channeled through a silica tube to an acetone-cooled condenser [Chevrier and Le Guern, 1982] allowing the fast condensation of water, acid gases and associated trace elements. In order to ensure a continuous flow of gas, a weak and constant aspiration was applied with a hand-pump. Gas condensates were sampled from F11 (G1, G2, G3 samples), FA (G4, G5 samples), F0 (G6, G7, G8 samples) and FR2 (G9 sample) fumarolic vents.

Water samples were filtered in the field through 0.2 μm Millipore filters, stored in suprapur HBr pre-washed Teflon bottles and acidified with suprapur HNO3 to avoid Sr and Pb adsorption on bottles walls. A sampling and filtration blank was made with ultra-pure water. Waters were sampled from the following wells: Isto (W1 sample), Piscio (W2 sample), Vasca (W3 sample), Rifici (W4 sample), C.Sicilia (W5, W6 samples) and Centro (W7, W8 samples).

4. Analytical Methods

Temperature, pH and redox potential (Eh) were measured directly in the field. Alkalinity
was obtained by titration with 0.01N HCl. SO2-, Cl- and F- concentrations were measured by High Pressure Liquid Chromatography (DX 300, Dionex). Na, K, Ca and Mg concentrations were determined by Atomic Adsorption (5100 ZL, Perkin Elmer SCIEX). Sr and Pb abundances were measured using a quadrupole-based ICP-MS (Elan 6000, Perkin-Elmer SCIEX). Accuracy and precision of the measurements were controlled by analyzing SLRS-4 certified reference material. Analytical errors are in the range of 5–10%.

[11] The amount of gas condensate and water samples needed for Sr and Pb isotopic measurements was calculated from Sr and Pb concentrations and evaporated. The solid deposits were submitted to acid digestion (HF + HNO\textsubscript{3}), oxidation (H\textsubscript{2}O\textsubscript{2}) and dried at 50°C. The final deposits were then dissolved with 0.5 mL of suprapur 2N HNO\textsubscript{3} and centrifuged before chemical extraction. Each dissolution was performed using ultrasonic agitation. The Sr and Pb chemical separation was on polypropylen columns containing 150 µL of Sr-spec resin, following the protocol described by Deniel and Pin [2001]. Blank contributions with respect to the total amount of sample analyzed were generally <0.25%. Higher blank contributions are discussed later.

[12] Sr and Pb isotopic compositions were measured using a Thermal-Ionization Mass Spectrometer (Finnigan MAT 261). Pb was loaded on a double Re filament using the silica gel/phosphoric acid loading technique. Sr was loaded on a single W filament together with “Ta-activator.” Regular measurement of NBS-981 Pb standard allowed the correction of the Pb isotopic data for mass fractionation (1.30 ± 0.05% per amu) using a linear law [Doucelance and Manhès, 2001]. For Sr, regular measurement of NBS-987 Sr standard was used to monitor accuracy. Sr isotopic ratios were normalized to 88Sr/86Sr = 0.1194. Duplicates of four waters (W2, W4, W5, W8) and one fumarole (G3) show good reproducibility and confirm the significance of analytical data.

4.1. Blank Contributions

[13] The blank of the bulk procedure (dissolution + chemical extraction) was measured by ICP-MS for each set of eight samples. The mean values obtained were 0.45 ng and 0.92 ng for Sr and Pb, respectively. For some samples, Sr or Pb blank contribution appears to be potentially significant (i.e., from 0.25% to 5.9%) with respect to the total amount of element analyzed. This is due to the limited quantities of sample available and to the low Sr and/or Pb concentrations observed in some cases. In order to evaluate the impact of the blanks on our isotopic data, binary mixtures calculations were performed on the basis of the assumption that the total amount of the element analyzed was a combination of blank and sample contribution. Sr-Spec procedural blanks were analyzed by TIMS for their Sr isotopic composition by Dessert [2002] at the LMTG, Toulouse. As our analyses were performed in nearly similar conditions (laboratory, reagents, material), the 87Sr/86Sr blank value = 0.72108 ± 0.00008 determined by Dessert [2002] appears to be suitable for our blank impact calculations. No isotopic compositions of Sr-spec procedural blanks were available for Pb. Moreover, Pb blanks display a high variability between the different chemical extractions (from 0.2 ng to 1.9 ng). This phenomenon was ascribed to variable atmospheric contamination during the chemical procedure and Pb blank was then supposed to result mainly from this source. As a consequence, the Pb isotopic composition of Toulouse airborne (206Pb/207Pb = 1.1042 ± 0.0001; 208Pb/206Pb = 2.1563 ± 0.0004, station 6, ORAMIP) analyzed by Monna et al. [1997] was used for the calculation and all isotopic data associated with blank contribution > 0.25% were corrected by this method. The maximum Sr blank contribution (5.9%) was observed for sample G7 whereas the maximum Pb blank contribution (3.6%) was observed in W2 and W3 samples. Maximum corrections applied correspond to 0.1% for 87Sr/86Sr ratio of G7 sample, and to 0.16% and 0.085% of W3 206Pb/207Pb and 208Pb/206Pb isotopic ratios, respectively. The minimum corrections applied correspond to 0.006% of the G3 87Sr/86Sr isotopic ratio and to 0.15% to 0.08% of G4 206Pb/207Pb and 208Pb/206Pb isotopic ratios, respectively. Such corrections have no significant implication on our interpretations of Sr and Pb isotopic compositions.

5. Results and Discussion

5.1. Thermomineral Waters

5.1.1. Major Element Geochemistry

[14] Sampling temperatures, pH and Eh vary between 21.2 to 81°C, 1.15 to 7.62 and -361 to 194 mV, respectively (Table 1). The major elements geochemistry of Vulcano groundwaters is extensively described in literature [Aiuppa et al., 2000; Bolognesi and D’Amore, 1993; Capasso et al., 2001; Cortecci et al., 2001]. Our major ele-
ments data presented are in agreement with previous studies. Therefore, in order to avoid redundancy, only general points will be presented. Sampled waters observed in classical anionic triangular plot (Figure 2) are far from the “mature water” field defined by Giggenbach [1988]. This indicates that Vulcano groundwaters are far from equilibrium with their host rocks. Following Aiuppa et al. [2000], Vulcano groundwaters can be classified in four groups:

[15] W1 water, sampled at the sea-side (Figure 1) can be classified as a chloride-rich water. W1 displays the highest Total Dissolved Solids (TDS = 35862 mg/kg) and lowest Eh (−361 mV) as the result of seawater contribution and bubbling of reducing gases (CH₄, H₂S).

[16] W2, W3 and W4 waters were sampled between the coastal area and the volcanic edifice (Figure 1). Their anion contents (Figure 2) correspond to the steam-heated water group. These waters are supposed to result from the interaction of shallow groundwaters of meteoric origin and H₂S-rich geothermal steam released from a deep (≈200 m) boiling geothermal aquifer fed by ascending volcanic gases. This hypothesis is actually supported by geothermal explorative drillings as

![Figure 2. Ternary plot (Cl, SO₄, HCO₃) for thermostimetal waters of Vulcano Island.](image-url)
reported by Sommaruga [1984]. An intense interaction of geothermal steam with W3 aquifer, leading to the oxidation of H2S to H2SO4, is likely to be responsible of the low pH, low Eh, high sulfate and high TDS value of this sample.

W5 and W6 waters were sampled close to the volcanic edifice (Figure 1) and fall in the compositional field of volcanic waters (Figure 2), also named chloride-sulfate groundwaters or magmatic waters [Aiuppa et al., 2000; Bolognesi and D’Amore, 1993]. As described in these studies, these groundwaters result from a mixing between meteoric water and HCl/H2SO4 condensates of volcanic origin and subsequent water-rock interaction.

W7 and W8 were sampled far from the volcanic edifice, close to the “Porto di Ponente area” (Figure 1). These waters can be classified as shallow groundwaters because of their low TDS samples ascribed to the meteoric recharge.

When plotted in the classical Giggenbach [1988] Na, K, Mg triangular diagram, most of the
thermal waters fall in the field of immature waters along a line characteristic of the isochemical rock dissolution [Bolognesi and D’Amore, 1993; Capasso et al., 2001; Cortecci et al., 2001]. This confirms the observation previously made with the anionic triangular diagram (Figure 2) which evidence that waters are far from thermodynamical equilibrium with the host rocks.

5.1.2. Sr and Pb Concentrations and Aqueous Speciation

As shown in Table 2, Sr content ranges from 4.4 to 9731.8 μg/kg, whereas Pb is considerably less abundant with concentrations from 0.15 to 89.6 μg/kg. These values are similar to previous studies [Aiuppa et al., 2000; Cellini Legittimo et al., 1980]. Thermodynamical modeling of our samples was performed with the CHESS 3.0 software program [Van der Lee and De Windt, 2000] with T°C, pH, Eh, major element and Sr, Pb concentrations as inputs. This software was used for the determination of the aqueous elemental speciation and for the calculation of saturation indexes (SI) with respect to solid phases with the aim to determine the influence of mineral precipitation to the Sr, Pb content in groundwaters. The results are reported in Table 3, and show that Sr aqueous chemistry in groundwaters is dominated by Sr²⁺ free ion and sulfate complexes, whereas the most abundant Pb species are respectively PbCO₃ and Pb²⁺ free ion. However, in the case of high Cl concentrations and/or reducing environment (i.e., W1 and W3 samples), chloride complexes become significant for Sr (SrCl⁻) and Pb (PbCl₂, PbCl³, PbCl⁵) and even dominant for lead in W1 sample which presents the highest Cl concentration and the lowest Eh. Saturation indexes (SI) with respect to mineral phases show that Sr contents in Vulcano groundwaters can be controlled by carbonate mineral precipitation in oxidizing environment. Indeed, SrCO₃ was found to be supersaturated in W5 sample and close to equilibrium values for W2 and W4 samples. In reducing and/or low pH environment (i.e., W1 and W3 samples) sulfide mineral precipitations are possible for Pb.

Major mineral phases (silica, carbonates, sulfates and fluorides minerals) are close to equilibrium or supersaturated. We did not calculate the saturation indexes for clay minerals because of the poor quality of the relevant thermodynamic data, but it is clear that they dominate the alteration facies at least for the more acidic fluids. In any case, this short thermodynamic analysis indicates that adsorption on and/or coprecipitation with these minerals have also to be considered as partially influencing the trace metals abundances in Vulcano groundwaters and might be responsible of the low Pb contents measured in our samples.

5.1.3. Sr and Pb Isotopic Compositions

Sr concentrations and isotopic compositions of Vulcano groundwaters are displayed in Table 2. In Figure 3, ⁸⁷Sr/⁸⁶Sr ratios are plotted versus Sr concentrations, together with the seawater (SW) value (Sr = 8100 μg/g; ⁸⁷Sr/⁸⁶Sr = 0.70918) derived from the study of Etna groundwaters by Pennisi et al. [2000]. In meteoric waters (MW), Sr concentrations and isotopic compositions fluctuate accordingly to the variable aerosol sources (seasalt, soil dust, biological or anthropogenic emissions). Pennisi et al. [2000] assigned a 10 μg/kg concentration and the typical ⁸⁷Sr/⁸⁶Sr isotopic ratios of seawater to their hypothetical meteoric water end-member. However, Negrel and Roy [1998] obtained Sr contents as low as 0.35 μg/kg in Massif Central rainwaters. North African aerosols might also influence the Vulcano’s rainwater budget [Monna et al., 1999]. Saharan dust [Krom et al., 1999] displays ⁸⁷Sr/⁸⁶Sr isotopic ratios ranging from 0.7160 to 0.7192. Concerning southern Europe, Groussset et al. [1998] have measured ⁸⁷Sr/⁸⁶Sr isotopic ratios in Corsican aerosols and obtained values ranging from 0.71925 to 0.72451. This shows that direct measurements of Vulcano rainwater are required to characterize more precisely the Sr concentrations and isotopic compositions of MW in this area. As a consequence, MW water possible values are represented as a range in Figure 3, with Sr concentrations ranging from 0.35 to 10 μg/kg and a minimum ⁸⁷Sr/⁸⁶Sr ratio corresponding to the SW value from Pennisi et al. [2000]. The rock values, selected from literature data [Clocchiatti et al., 1994; De Astis et al., 1997, 2000; Del Moro et al., 1998; Ellam et al., 1989; Esperança et al., 1992; Gioncada et al., 2003] are also presented in Figure 3. The lower rock isotopic value corresponds to sample V1229/1a-b from De Astis et al. [1997] displaying a ⁸⁷Sr/⁸⁶Sr = 0.70412 whereas the higher value corresponds to sample V190/3La from De Astis et al. [2000] with a ⁸⁷Sr/⁸⁶Sr = 0.70588.

In Figure 3, W1 sample display a higher Sr content than SW and a ⁸⁷Sr/⁸⁶Sr ratio between the higher Vulcano rock signature
and the SW value. This confirms the seawater main contribution for this sample already suggested by major elements chemistry. All other waters display significantly lower Sr concentrations, and most of them have $^{87}\text{Sr}/^{86}\text{Sr}$ ratios in the range of rock values. Steam-heated and volcanic waters both display low $^{87}\text{Sr}/^{86}\text{Sr}$ ratios and high Sr concentrations with respect to shallow groundwaters, likely as the result of enhanced rock leaching due to a higher input of geothermal and/or magmatic fluids. Together with major elements geochemistry, these observations suggest that the Sr budget of steam-heated and volcanic waters results mainly from a balance between two end-members (meteoric water and parent rock) modulated by acid gases influx. Indeed, variable dissolution of rising gases into shallow aquifers modifies the physico-chemical parameters of groundwaters and therefore controls the intensity of rock leaching. W7 and W8 samples display the lowest Sr concentrations and $^{87}\text{Sr}/^{86}\text{Sr}$ signatures between the Vulcano rock and the MW range. This suggests a strong influence of MW for these samples together with a lower efficiency of rock leaching which is in agreement with major elements geochemistry.

[24] Due to the low Pb contents, only two Pb isotopic data are available for water samples (see Table 2). In Figure 4, W2 and W3 samples plot far from the Vulcano rocks isotopic compositions and in the field of recent anthropogenic signatures [Monna et al., 1999]. For these steam-heated waters, these results suggest a strong influence of anthropogenic Pb either via meteoric water infiltrations or contamination of the relative aquifers by geothermal drillings performed in the 50s [Sommaruga, 1984]. Natural Pb influence due to wall rock interactions, magmatic gas dissolution or re-entrainment of volcanogenic aerosols in MW during rainfall appears negligible for these samples. Any marine contribution can also be ruled out due to the very low Pb content (about 10^{-12}g/g) in seawater [Yuan-Hui, 1991].

5.2. Fumarolic Gas Condensates

[25] Sampling temperature, Sr and Pb concentrations and isotopic compositions of gas condensates from La Fossa crater fumarolic field are reported in

Figure 3. $^{87}\text{Sr}/^{86}\text{Sr}$ ratios versus Sr (μg/kg) in acid condensates (triangle plot) and thermomineral waters (square plot) from Vulcano Island. The seawater value (round plot) is taken from the study of Pennisi et al. [2000]. The clear shaded area corresponds to the MW range, whereas the dark shaded area corresponds to the rock values from literature (see text for details). Vulcano rock extreme isotopic values are from De Astis et al. [1997] and De Astis et al. [2000]. The Sr concentrations and isotopic compositions of fluid samples are related both to the intensity of rock leaching (horizontal arrow) and to the influence of SW and MW (vertical arrows).
Table 4. Sr and Pb enrichment factors (EF) with respect to Al are also shown in Table 4. Al is chosen because of its refractory behavior in volcanic fluids. Ti or Zr may also be chosen with little effect for global results. EF were calculated using the mean of Vulcano rocks analyses from Clocchiatti et al. [1994].

The outlet temperatures of fumarolic vents, sampled during the 1999–2001 period, range from \(104^\circ C\) (G9) to \(446^\circ C\) (G3). Sr concentrations are ranging from 1.4 \(\mu g/kg\) (G3) to 151.7 \(\mu g/kg\) (G5) whereas Pb is much more abundant with concentrations ranging from 90.3 \(\mu g/kg\) (G7) to 7968.5 \(\mu g/kg\) (G8). \(^{87}\text{Sr}/^{86}\text{Sr}\) ratios vary from 0.70487 ± 0.00002 (G8) to 0.71009 ± 0.00002 (G3). \(^{206}\text{Pb}/^{207}\text{Pb}\) ratios range from 1.1780 ± 0.0001 (G3) to 1.2396 ± 0.0001 (G5) and \(^{208}\text{Pb}/^{206}\text{Pb}\) ratios vary from 2.0314 ± 0.0003 (G7) to 2.0756 ± 0.0002 (G3). No clear correlations were observed between the outlet temperature of the fumarolic vents and Sr and Pb concentrations or isotopic compositions.

Pb and Sr display respectively high \((10^2 - 10^3)\) and low \((\approx 0.5)\) EF in volcanic fluids (Table 4), as the result of their respective volatile and refractory behaviors. This accounts for the very contrasted elemental and isotopic compositions for Sr and Pb in Vulcano condensates.

In Figure 3, most of the gas samples (G1, G2, G5, G6, G8) display low Sr isotope ratios, within the bulk rock range, suggesting both Sr content in volcanic gases to be mainly derived from wall rock or particle leaching during gas ascent and Sr contamination from meteoric water infiltrations to have a negligible impact on the \(^{87}\text{Sr}/^{86}\text{Sr}\) isotopic ratios. However, two samples (G3, G7) display a definitely contrasted isotopic signature, close to, or inside the meteoric water range. These samples also display the lowest Sr concentrations observed in gas condensates.

In the \(^{208}\text{Pb}/^{206}\text{Pb}\) versus \(^{206}\text{Pb}/^{207}\text{Pb}\) diagram (Figure 4), G1, G4, G5, G6, G8 and G9 samples plot in the field of parent rocks. This observation is in accord with previous studies performed in plume aerosols from Masaya [Vallelonga and Mather, 2003] and in lead sulfosalts sublimates of Vulcano [Ferrara et al., 1995] displaying lead isotopic ratios of volcanic exhalations similar to respective...
parent rock. Some Pb may originate, as Sr, from acid fluid-rock interactions. However, due to high EF (10²–10³) in gas condensates, the Pb budget is likely to be dominated by magma degassing. Because isotopic mass fractionation during Pb degassing does not induce measurable effects, gases and rocks should display similar Pb isotopic compositions. Therefore it is not possible to discriminate if small Pb isotopic variations between samples G1, G4, G5, G6, G8 and G9 are due to interactions with isotopically different pathways during gas ascent or to limited magmatic signature variations.

[30] G3 and G7 samples display large differences in both Sr and Pb isotopic ratios with signatures close to the meteoric/anthropogenic values. These samples display the lowest Sr and Pb concentrations measured in gas condensates and one may suggest a possible contamination. However, an artifact due to a rainfall-induced contamination is unlikely because sampling was performed during sunny days and the percentage of contamination should be almost total due to the low concentrations generally observed in meteoric water. Contamination of samples by solid particles can be also ruled out, as it would induce higher Sr and Pb contents. Therefore episodic variations of both Sr and Pb isotope ratios between magmatic/rock signatures and atmospheric/anthropogenic signatures are obvious for F11 (G1, G2, G3 samples) and F0 (G6, G7, G8 samples) fumaroles. As the timescale is quite short between the different sampling campaigns (from 1999 to 2001), a deep process, such as the involvement of Calabrian meta-sediment [Caggianalli et al., 1991] in deep fluid circulation can be ruled out as already concluded by Ferrara et al. [1995]. Moreover, a marine contribution by deep infiltration within the volcanic pile is unlikely to affect Sr and Pb isotopic compositions of the crater fumaroles because (1) Sr has a refractory behavior in volcanic gas and large amounts of this element could not be transported in fumarolic fluids from deep levels to the volcano/atmosphere interface and (2) Pb content in seawater is very low [Yuan-Hui, 1991] and can be considered as a negligible source of Pb in fumaroles. As suggested by several studies [Ferrara et al., 1995; Harris and Maciejewski, 2000], local fluctuations of the volcanic structure permeability are likely to occur due to both seismic events and self-sealing processes that continuously change the circulation pathways and local fluxes of fumarolic fluids. Such changes may lead ascending volcanic gases to undergo variable interactions with meteoric water, which has recently filtered into the shallow volcanic

Table 4. Sr and Pb Concentrations and Isotopic Compositions in Vulcano Fumarolic Gases

<table>
<thead>
<tr>
<th>Fumarolic Vent Number</th>
<th>Date</th>
<th>T (°C)</th>
<th>Sr (mM/kg)</th>
<th>Pb (mM/kg)</th>
<th>EF Sr</th>
<th>EF Pb</th>
<th>Sr EFPb</th>
</tr>
</thead>
<tbody>
<tr>
<td>F11</td>
<td>G1</td>
<td>23.02.2001</td>
<td>365</td>
<td>17.6</td>
<td>1392.8</td>
<td>0.5</td>
<td>8 x 10²</td>
</tr>
<tr>
<td></td>
<td>G2</td>
<td>28.05.2000</td>
<td>410</td>
<td>151.7</td>
<td>7470.3</td>
<td>0.70507b</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G3</td>
<td>19.05.1999</td>
<td>446</td>
<td>1.4</td>
<td>127.6</td>
<td>1.1780</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G4</td>
<td>21.05.2000</td>
<td>363</td>
<td>6.4</td>
<td>692.5</td>
<td>0.70530b</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G5</td>
<td>28.05.2000</td>
<td>307</td>
<td>3.7</td>
<td>335.9</td>
<td>1.2320</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G6</td>
<td>21.05.2000</td>
<td>313</td>
<td>8.4</td>
<td>90.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G7</td>
<td>27.05.2000</td>
<td>343</td>
<td>41.9</td>
<td>7968.5</td>
<td>0.70487b</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G8</td>
<td>20.05.1999</td>
<td>406</td>
<td>34.8</td>
<td>1289.6</td>
<td>1.2352</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G9</td>
<td>21.05.1999</td>
<td>343</td>
<td>41.9</td>
<td>7968.5</td>
<td>1.2320</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Duplicate</td>
<td>23.02.2000</td>
<td>363</td>
<td>6.4</td>
<td>692.5</td>
<td>0.70530b</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Duplicate</td>
<td>21.05.2000</td>
<td>313</td>
<td>8.4</td>
<td>90.3</td>
<td>1.2352</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Duplicate</td>
<td>20.05.1999</td>
<td>343</td>
<td>41.9</td>
<td>7968.5</td>
<td>0.70530b</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Duplicate</td>
<td>21.05.1999</td>
<td>343</td>
<td>41.9</td>
<td>7968.5</td>
<td>0.70530b</td>
<td></td>
</tr>
</tbody>
</table>

- Sr and Pb concentrations are in mM/kg.
- Results corrected for blank contribution (see text).
- Sr and Pb enrichment factors (EF) with respect to Al are also shown (see text). The vent temperature T (°C) and the collection date are also listed. F0, F11, FA, and FR2 refer to the classical denomination of fumaroles used at Vulcano (see text).
edifice, therefore accounting for the meteoric/anthropogenic isotopic signature of samples G3 and G7. As discussed above, MW measurements are required to define more precisely the MW range in the Vulcano Island area because Sr concentrations and isotopic compositions of rainwater are dependent on aerosols sources.

6. Conclusion

These new coupled Sr-Pb concentrations and isotopic measurements clearly indicate that the Metallic Trace Elements (MTE) budget of fumarolic gases and shallow waters of Vulcano Island is influenced by both natural and atmospheric/anthropogenic sources. The Sr budget in groundwaters appears to result mainly from water/rock interaction modulated by volcanic gas input into shallow aquifers. The Pb isotope ratios measured in two steam-heated waters reveal the dominant anthropogenic origin of this element at least in these shallow waters. In most gas samples, the data indicate that Pb is originated from magma degassing whereas Sr results mainly from wall rock or particle contamination during gas ascent. Two gas samples were found to display clear anthropogenic/atmospheric Sr and Pb isotopic signatures. This might indicate that variable permeability of the volcanic edifice allows the recycling of fresh meteoric water by ascending volcanic fluids. Because of the short time-scale of variations of the isotopic signatures for a single fumarole (one year period), modifications of the fluid migration network within the volcanic pile appears as a fast-operating process. The 3-D permeability distribution appears as highly dependent on local stress field changes, micro-fracturation due to small volcanic earthquakes and migrating self-sealing processes. These interpretations, performed on the first set of Sr and Pb isotopic ratios in Vulcano gases and groundwaters, have to be confirmed by future Sr and Pb isotopic measurements, coupled with multiparameter data (fluid geochemistry, seismicity, deformations). This will allow a considerable improvement of the comprehension of interactions between ascending gases, shallow aquifers, infiltrated meteoric water and wall rock in a continuously permeability changing structure.

Acknowledgments

Pierre Brunet is thanked for his help during TIMS measurements. The authors also thank J. Escalier, M. Valladon, R. Freydier, F. Candaudap, and C. Boucayrand for their help during this work. We are grateful to T. Mather and W. D’Alessandro, who, through their in depth reviews, have greatly contributed to the improvement of this paper.

References

Möller, P., P. Duls, Y. Savaschin, and M. Conrad (2004), Rare earth elements, yttrium and Pb isotope ratios in thermal spring and well waters of West Anatolia, Turkey: A hydrochemical study of their origin, Chem. Geol., 206, 97–118.

Tedesco, D. (1997), Systematic variations in the 3He/4He ratio and carbon of fumarolic fluids from active volcanic areas in Italy: Evidence for radiogenic 4He and crustal carbon addition by the subducting African plate?, *Earth Planet. Sci. Lett.*, 151, 255–269.

